Quenchable High Pressure Phases of GdYbS₃

J. B. CLARK* und KLAUS-JÜRGEN RANGE

Institut für Anorganische Chemie der Universität München

(Z. Naturforsch. 30b, 896-899 [1975]; received August 15, 1975)

High Pressure Phases, Crystal Structures

Three new modifications of GdYbS₃ can be retained metastably, after quenching from high pressure and temperature. The Guinier powder data is presented and indexed. The three modifications include a cubic defect Th₃P₄-type phase with a = 8.310(2) Å, an orthorhombic A-type phase with a = 7.279(4) Å, b = 15.119(6) Å and c = 3.875(3) Å, and an orthorhombic U₂S₃-type phase with a = 10.603(5) Å, b = 3.869(3) Å and c =10.385(5) Å. Structural relationships between the present group of structures and the structures of the rare earth sulfides with formula Ln₂S₃ are discussed.

Introduction

The crystal chemistry of the rare earth sesquisulfides with formula Ln_2S_3 has been investigated by a number of workers. Recently RANGE and LEEB¹ published the structures of quenched high pressure phases for certain rare earth sesquisulfides. In their paper the relevant literature is reviewed.

To obtain more information on the influence of cationic size on the transformations present, we extended the investigations to include mixed rare earth sulfides with the general formula LnLn'S₃. The crystal chemistry of these compounds at atmospheric pressure has been reported by CARRÉ *et. al.*².

In the present paper the quenchable high pressure phases of GdYbS₃ are investigated and related to the quenchable phases obtained for the rare earth sesquisulfides.

Experimental

 Gd_2S_3 and Yb_2S_3 were prepared by heating stoichiometric quantities of the elements (Gd, Yb 99,9% Rasmus Hamburg; S, Merck) in evacuated quartz ampoules for 80 hours at 1150 °C. The com-

* Permanent address: National Physical Research Laboratory, C.S.I.R., P.O. Box 395, *Pretoria 0001*, South Africa.

Requests for reprints should be sent to Dr. J. B. CLARK, National Physical Research Laboratory, C.S.I.R., P.O. Box 395, *Pretoria 0001*, South Africa, or to: Prof. Dr. KLAUS-JÜRGEN RANGE, Institut für Chemie der Universität Regensburg, *D-8400 Regensburg*, Universitätsstr. 31, BRD. pounds were found to be well crystallized and single phase using diffraction techniques. $GdYbS_3$ was then prepared by grinding a 1:1 mixture of Gd_2S_3 and Yb_2S_3 very finely, then pressing the mixture into a tablet, and heating the tablet in an Ar flushed, evacuated sealed quartz ampoule for 150 hours at 1000 °C. X-ray analysis of the product showed only slight traces of Gd_2S_3 and Yb_2S_3 present, with the bulk of the material single phase. $GdYbS_3$ was reported to be F-type² but exact characterization was difficult due to the lack of diffraction data in ref. 2. From the present results the F-type characterization seems doubtful with a D-type structure being more probable.

Pressure was generated in a Belt device. The experimental procedure has been described previously¹. Pressure and temperature were read from previously determined calibration curves, and are thought to be accurate to ± 4 kbar and ± 75 °C respectively. The samples were contained in BN capsules with no evidence of reaction. In all cases pressure was increased and maintained until constant, when the temperature was increased slowly to the desired value. The pressure-temperature conditions were maintained for 1 hour before quenching to ambient.

The products were examined using a Huber Guinier Camera (film and counter methods) and monochromatized CuK_{a1} ($\lambda = 1,5405$) radiation.

Results

Three new quenchable phases were found for GdYbS₃ after treatment at 10, 25, 40 kbar and 1500 °C respectively.

At 10 kbar, 800 °C only the normal atmospheric starting phase is present upon quenching. However, after quenching from 10 kbar, 1500 °C a simple diffraction pattern is obtained which can be well indexed using a cubic cell with a = 8,310(2) Å. The diffraction lines are extremely sharp indicating a well crystallized product. The faint traces of Gd₂S₃ and Yb₂S₃ which were present in the starting product, had vanished. The higher reaction temperature probably facilitated complete reaction of the starting products. The diffraction data is presented in Table I. The observed peaks and their intensities strongly suggest that the space group is T⁶d-I43d, and that this phase has the defect-Th₃P₄ (C-Type) structure. The defect-Th₃P₄ structure type also occurs for the related Ln₂S₃ compounds, but the exact composition is still the subject of some discussion^{3,1}. It would appear that a partial decomposition is necessary, and this is supported in our present work by the presence of H₂S after experiments at 10 kbar, 1500 °C. No trace of free S can be found in the diffraction patterns, but this is expected as it would probably be amorphous.

Table I. Guinier Powder Data GdYbS₃ after treatment at 10 kbar, 1500 °C. (Defect Th₃P₄-type structure.)

d _{obs} [Å]	dcale [Å]	hkl	I (peak heights)		
3.3928	3.3925	211	100		
2.9382	2.9380	220	3		
2.6289	2.6278	310	95		
2.2216	2.2209	321	60		
2.0778	2.0775	400	4		
1.8586	1.8582	420	30		
1.7717	1.7717	332	22		
1.6962	1.6963	422	14		
1.6297	1,6297	431	33		
1.5172	1.5172	521	5		
1.4693	1,4690	440	2		
1 3479	1.3481	611	27		
1 3140	1.3139	620	7		
1.2822	1.2823	541	10		
1.2252	1.2252	631	3		
1,1994	1,1994	444	5		
1.1525	1,1524	640	6		
1.1308	1,1308	721	19		
	1,1308	633			
1.1103	1.1105	642	3		
1.0553	1.0553	651	4		

After treatment at 25 kbar, 1500 °C only slight traces of the defect-Th₃P₄ phase can be found, but the bulk of the material appears as a new phase. The Guinier pattern can be indexed using an orthorhombic cell with a = 7.279(4) Å, b =15.119(6) Å and c = 3.875(3) Å (Table II). Unit cell dimensions, systematic absences and intensity data strongly suggest that this phase has the A-type (Gd_2S_3) structure. The composition of this phase is almost surely $GdYbS_3$ and this would suggest that the defect-Th₃P₄ phase found at lower pressures does indeed represent a decomposition process which

Table II. Guinier Powder Data for GdYbS₃ after treatment at 25 kbar, 1500 °C. (A-type structure.)

d _{obs} [Å]	d _{calc} [Å]	hkl	I (peak heights		
4.147	4.143	130	5		
3.781	3.779	040	11		
3.758	3.755	011	7		
3.640	3.639	200	16		
3.539	3.538	210	19		
3.337	3.354	140	shoulder		
3.329	3.337	111	100		
3.282	3.279	220	shoulder		
3.073	3.073	031	23		
2.793	2.792	150	14		
2.654	2.653	201	shoulder on		
21002	1.000		TheP4-peak		
2.536	2.536	141	11		
2.503	2.503	221	32		
2 384	2 384	051	12		
9 348	2.001	231	12		
9 296	9 296	250	11		
2.340	2.320	200	11		
2.5101	2.5100	520	11		
2.2052	2.2050	101	11		
2.1864	2.1858	330	9		
2.1735	2.1715	241	b		
2.0779	2.0715	260	4		
2.0703	2.0705	170	4		
2.0379	2.0377	311	9		
2.0283	2.0288	161	5		
1.9933	1.9942	251	7		
1.9840	1.9843	321	7		
1.9382	1.9382	002	14		
1.9040	1.9040	331	5		
1.8888	1.8897	080	7		
1.8715	1.8775	022	7		
1.8277	1.8270	261	12		
1.8064	1.8064	410			
1.0001	1 8064	341	9		
1 7471	1.7476	360	11		
1 7955	1 7946	042	2		
1.7104	1 7107	202	5		
1.7104	1.7004	251	19		
1.0000	1.6069	919	10		
1.0905	1.0908	149	19		
1.0779	1.0784	144	12		
1.0080	1.0084	100	É		
1.0300	1.0307	190	0		
1.5927	1.5932	301	7		
1.5588	1.5590	450	1		
1.5412	1.5413	091	4		
1.4849	1.4848	322	7		
1.4501	1.4502	332	7		
1.4293	1.4293	520	7		
1.4187	1.4192	291	11		
1.3306	1.3303	182	4		
1.3061	1.3066	422	11		
1.2981	1.2979	362	7		
1.2679	1.2678	113	4		
1.2599	1.2598	0 12 0	7		
	1.2517	442			
1 2512	1 2516	033	5		
A . M O L M	1.2010	000			

897

does not occur fully at 25 kbar, 1500 °C because of the higher pressure. As would be expected from the small amount of the Th_3P_4 phase present, very faint traces of H_2S could be detected after the experiment.

After treatment at 40 kbar, 1500 °C all traces of the C- and A-type phases are removed, and are replaced by the diffraction peaks of a third phase. These peaks can be indexed using an orthorhombic cell with a = 10.603(5) Å, b = 3.869(3) Å and c = 10.385(5) Å (Table III). Systematic absences are consistent with the space group Pnma, and the intensity data suggest that this phase has the U₂S₃ structure. This structure was also found for certain Ln₂S₃ compounds¹.

Table III. Guinier Data for GdYbS₃ after treatment at 40 kbar, 1500 °C. (U₂S₃-type structure.)

dobs [Å]	d _{calc} [Å] hkl		I (peak heights)		
5.309	5.301	200	13		
5.197	5.192	002	10		
3.710	3.710	202	100		
3.625	3.625	011	63		
3.432	3.430	111	43		
3.348	3.346	301	87		
3.292	3.291	103	60		
3.126	3.125	210	33		
2.994	2.993	211	shoulder		
2.979	2.978	112	63		
2.678	2.678	212	40		
2.653	2.651	400	33		
2.595	2.596	004	shoulder		
2.579	2.580	013	33		
2.533	2.531	311	27		
2.506	2.507	113	77		
2.361	2.361	402	20		
2.331	2.332	312	47		
2.186	2.187	410	17		
2.140	2.140	411	30		
2.112	2.113	114	37		
2.081	2.084	313	13		
2.039	2.038	105	17		
2.018	2.015	412	27		
1.997	1.997	214	13		
1.935	1.934	020	40		
1.872	1.872	121	10		
1.840	1.840	314	20		
1.808	1.808	503	27		
1.805	1.803	115	shoulder		
1.790	1.790	221	33		
1.766	1.767	600	7		
1.752	1.751	512	13		
1.729	1.730	215	13		
1.715	1.715	222	20		
1.674	1.675	321	20		
1.668	1.668	123	23		
1.622	1.625	315	7		
1.486	1.484	505	10		
1.339	1.339	424	10		
1.314	1.314	325	13		
1.305	1.306	713	10		

Discussion

The present results show a close relationship with those obtained for the simple Ln_2S_3 compounds¹. The highest pressures used in the present study produced the Ln_2S_3 -III (U₂S₃) structure type which was found to be the most dense form for the smaller rare earths. Previously³ the A-type was found to be the most dense form for the larger rare earths. The U₂S₃ structure type is marginally more dense than the A-type structure. However, the size of the cation was found to be the deciding factor and no transformation from the A-type structure to the U₂S₃-structure has been observed.

In the present study both structure types occur, with the U_2S_3 -structure being favoured at higher pressures as would be expected. This is certainly due to the size differences between the Gd and Yb. At high pressures Gd_2S_3 retains the A-type structure to 70 kbar whereas Yb_2S_3 adopts the U_2S_3 -structure at 20 kbar. These contrasting features obviously result in both structure types appearing for $GdYbS_3$.

The two structure types have approximately the same spacefilling requirements, and the coordination number of the cation is equal in both cases. The coordination of the cation in the U_2S_3 -structure is particularly interesting and is described in detail in ref. 1. A comparison of the unit cell volumes for the Ln₂S₃ compounds is presented in Table IV,

Table IV. Unit cell volumes for Ln₂S₃ and LnLn'S₃ compounds.

Structure type	Compour	nd	r _{Cation} [Å]	Unit cell volume [Å ³]	Re	ef.
U ₂ S ₂ -Type	Lussa	HP	0.848	405.3	1	
(Z = 4)	Yb2S3	HP	0.858	408.1	ĩ	
	Tm2S3	HP	0.869	412.8	1	
	Er2S3	HP	0.881	417.6	1	
	Ho2S3	HP	0.894	422.6	1	
	GdYbS3	HP	0.898	425.9	This	work
Gd ₂ S ₃ -Type	GdYbS ₃	HP	0.898	426.5	This	work
(A-Type)	Dv2S3	NP	0.908	427.2	3	
(Z = 4)	Tb ₂ S ₃	NP	0.923	433.1	3	
100 -0.0 U	Gd2S3	NP	0.938	440.7	3	
	Sm2S3	NP	0.964	451.1	3	
	Nd ₂ S ₃	NP	0.995	465.3	- 3	
	Pr2S3	NP	1.013	473.1	3	
	Ce ₂ S ₃	NP	1.034	483.0	3	
	La ₂ S ₃	NP	1.061	498.4	3	

HP = High Pressure Phase; NP = Normal Pressure Phase.

illustrating that the present unit cell volume of the A-type is probably the smallest unit cell volume possible for this structure type, whereas that of the U_2S_3 phase, is one of the largest of its type. However, the U_2S_3 phase is probably more compressible at higher pressures. These factors indicate that for the present compound GdYbS₃, we have a critical relationship between the sizes of the Gd and Yb which makes it possible to obtain both structure types for the same compound. The average radius of the cations Gd and Yb is 0.898 Å, which lies between the cationic radii of Ho and Y⁴. Preliminary

experimental results on the compounds Ho_2S_3 and Y_2S_3 at low pressures and high temperatures indicate that the A-type structure may also occur for these compounds.

One of us (CLARK) would like to thank the Alexander von Humboldt Foundation for a fellowship, which made this investigation possible. The Fonds der Chemischen Industrie supported our research. Calculations were carried out on the TR 440 of the Leibniz Computing Center of the Bavarian Academy of Sciences.

¹ K.-J. RANGE and R. LEEB, Z. Naturforsch. **30b**, 889 [1975].

² D. CARRÉ, J. FLAHAUT, P. KHODADAD, P. LARUELLE, N. RODIER, and VO VAN TIEN, J. Solid State Chem. 7, 321 [1973].

³ A. W. SLEIGHT and G. T. PREWITT, Inorg. Chem. 7, 2282 [1969].

⁴ D. H. TEMPLETON, J. Amer. Chem. Soc. 76, 5237 [1954].